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1. Introduction 

Von Kármán vortex is a complex phenomenon in fluid 
mechanics, seen in many places. Vortices rotate in opposite 
directions from object sides. Common examples of the 
phenomenon in civil engineering include the structural 
dynamics of skyscrapers, chimney stacks, the atmosphere 
around mountains, suspension bridges, marine engineering, 
which includes the vibrations of pipelines resting in the 
seabed, and ocean engineering, as shown in Fig. 1 [1]. 

 

 
Fig. 1 von Kármán Vortex around an island on the sea [2]. 

Many researchers have been investigated in this field as 
will be reviewed by the following survey.  

Gupta [3] introduced a new method to identify the vortex-
shedding parameters. A wind-tunnel tests on two objectives, 
the first was a circular cylinder and the second was two bridge 
decks configuration. The author estimated the response of 
vortex-induced by determining the model parameters from the 
experiments.  

Tapia and Chellali [4] developed a simplified model of 
Kármán Street by CFD simulations. They used this model to 
train neural network-based controllers of different robot fishes 
in order to control the frequency of fishes’ tail beat before 
releasing them into water. They deduced that frequency of 
fishes’ tail beat was well matched with Kármán Street. 

Thoraval et al. [5] studied the irregular splashing which 
result from impinging a drop on a liquid pool. They used 
super-speed video technology in conjunction with numerical 
simulations of high accuracy to display the irregular splashing. 
They reported that, at higher Reynolds numbers, an 
axisymmetric von Kármán vortex was shed from the free 
surface into the liquid. Ali et al. [6] Numerically investigated 
a flexible flap that generated vortices in an environment of 
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Abstract 
Van Kármán vortex street is considered an important phenomenon that accompanies fluid flow, especially when exposed to a certain barrier, 
as periodic vortexes occur on both sides of the body that rotate in two opposite directions. This phenomenon occurs in the atmosphere around 
mountains, oceans, seas, and islands. Also, this phenomenon makes it possible to induce a fluid flow around a specific body present in the 
flow path. In this study, a model for fluid flow around a cylinder of a certain diameter was taken, where the flow near the boundary layers of 
the cylinder surface moves slower than near the free stream. In addition, the pressure distribution was studied, and it was observed that there 
is a pressure gradient due to the difference in momentum at the surface of the cylinder in distant areas due to friction. The study area was 
divided into fine meshes with Fluent software, especially in the irregular areas. The simulation was implemented for Reynolds numbers Re = 
100 and Re = 1500 for incompressible flows. Consequently, the equations that do not depend on pressure are difficult to solve. Therefore, 
methods linking pressure and velocity were adopted, where the pressure-velocity coupling simple method was used. The first-order forward 
difference scheme was adopted in representing the differential equations as a function of time when performing the simulation. From the 
steady state and upwards to Reynolds number Re = 100, it was observed that a twain of vortices appeared on the body at a certain speed range. 
When the state was changed from the stable state to the transitional state, the results changed, as the flow became asymmetric and unsteady 
due to vortex shedding phenomena, which led to the generation of vortexes in different ways. The U-Velocity curve was studied for two 
different cases, and the results showed a large discrepancy between the first order and the second order, where the second order had better 
behavior but required great effort to reach accurate results. Also, pressure-velocity was studied to satisfy mass conservation, and numerical 
techniques were used to compute the equations of Navier-Stokes in CFD, such as SIMPLEC, PISO, and SIMPLE. An acceptable convergence 
was not reached with the PISO; therefore, the SIMPLE method was adopted. The pressure gradient was drawn around the cylinder, where it 
was observed that the pressure was greatest at the front of the cylinder and its lowest value at the end. 
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laminar flow to improve the performance of some kinds of heat 
exchangers. They used a square cylinder in 2D domain like 
generate a von Kármán vortex street. They concluded that 
vortices generated by each individual flap will induce a motion 
perturbation on the close flap leading the oscillations to be 
self-sustained. Noor [7] performed a numerical simulation of 
different bluff body shapes, such as triangular, rectangular, and 
circular, to study the vortex-shedding phenomenon. The 
author observed that to obtain better performance, the vortex 
flow meter must have sharp corner to produce vortex shedding 
frequency with stable value. 

Wang and Alben [8] developed a numerical model to study 
the vortex streets dynamics when flowing in channel. The 
reverse and regular von Karmen streets with different 
geometries, Reynolds numbers (Re), and strengths were 
studied. They deduced that inflow vortex street was kept for 
the reverse von Kármán and changed for the regular street. 
They noticed for regular streets, that a transition to 
nonsymmetric dynamics is occurred when vortices are 
powerful, or (Re) rises, or vortex streets are extended vertically 
or compressed horizontally. Dol [9] conducted a turbulence 
investigation in a rotating circular cylinder wake in a free 
uniform stream to describe the vortex shedding patterns up to 
inhibition of the periodic vortex street of high-speed ratios. 
The author established that Kármán Vortices shedding in the 
generated wake was amended by rotating of the cylinder. Heil 
et al. [10] analyzed the 2D flow past a circular cylinder to 
explain the alterations in the field of vorticity topology that 
resulted in the creation of the von Kármán vortex. They 
demonstrated that as Reynolds number increases, the points of 
vortices formation and vanishing move fast downstream and 
upstream, respectively. Dai et al. [11] the investigation focused 
on the inhibition of vortex shedding, considering two key 
parameters: the width ratio of the splitter plate and the height-
to-diameter ratio of the cylinder, as well as the length. They 
deduced that the splitter-plate supplied an effective and 
feasible procedure for vortex hindrance at a high Re, and the 
degree of inhibition can be greatly increased by an optimum 
configuration. Morast [12] used multi-layer perceptron and 
convolutional neural networks (CNN) to analyze the different 
structures formed in von Kármán vortex street in order to 
determine Reynolds number that governing the fluid flow 
system. The author concluded that deep learning algorithms 
(neural networks) can be learn the parameterization of Navier-
Stokes equations from von Kármán vortex street and foresee 
the object locations. Greco et al. [13] used a synthetic jet 
technology represented by a slot in the rear of an open wind 
tunnel to discuss the von Kármán vortex behind a cylinder. The 
effects of dimensionless frequency and momentum coefficient 
on behavior of von Kármán Street were studied. Ghazijahani 
et al. [14] conducted echo state networks in order to predict the 
velocity fields in von Kármán vortex street by aiding of 
Particle Image Velocimetry (PIV) data. Maches et al. [15] 
investigated the stability and existence of von Kármán vortex 
street consisted of regular clusters similar to polygonal-shape 
represented by spatially periodic vortices. They captured the 
infinite vortex streets stability by using a point-vortex model. 
Alzabari et al. [16] used the simulation of large-eddy to 
investigate the turbulent flow created by a horizontal cylinder 
on the free surface, which was increasingly shallow with ratios 
of submergence-to-cylinder diameter between 0.5 and 2.1. 

Keeler and Crowdy [17] achieved a new exact solution to 
the problem of steadily traveling with the 2D vorticity of water 
waves. 

In the present study, the impact of a high Reynolds number 
(Re) on the field of flow of the von Kármán vortex and 
hydrodynamic instability will be investigated. 

2. Methodology 
The unsteady flow of a fluid over bluff bodies results in a 

repeating pattern of swirling vortices, which causes a von 
Kármán vortex. The flow near the boundary layers in a circular 
cylinder moves slower than the flow near the free stream. The 
flow momentum near of the cylinder surface is low because 
the viscous effects create a pressure gradient. Pressure gradient 
regions cause the separation of flow at points along the body. 
When flow separation occurs, the flow changes into swirling 
eddies, creating a wake region, as shown in Fig. 2 [18]. 

 
Fig. 2 Boundary layer around cylinder. 

The vortices start to form in the laminar flow at a low 
Reynolds number between 5 and 40, and when increases above 
40, the wake becomes unstable and vortex shedding starts to 
appear. One vortex becomes larger relative to another. When 
the bigger vortex gets powerful enough, the opposing vortex is 
drawn over the weaker one, where vortex A rotates clockwise, 
while the opposite vortex B rotates counterclockwise. The 
vortex B will not allow further supply of vortices to the vortex 
A, leading to shedding the vortex A. Following vortex A, a 
new vortex, namely vortex C, will form on the same side, 
which will get rid of vortex B. Every time, this process will 
continue when one side sheds a new vortex, as shown in Fig. 
3 [19].  

 
Fig. 3 von Kármán Vortex development. 
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The dimensionless Strouhal number (St) describes the 
frequency of vortex shedding. The Strouhal number 
normalizes the frequency of vortex shedding (fs) with the 
cylinder diameter (D) and flow velocity (u). 

St = 
fs D

u
                                                                                (1) 

With an increasing Reynolds number, the laminar flow 
undergoes a turbulent transition over 300-400, the vortex 
periodicity does not occur, turbulence develops, and thus the 
von Kármán vortex totally disappears. The vortex shedding 
appears at Re near 40, and the Strouhal number is at 0.1. The 
Strouhal number increases to 0.2 and stays constant when the 
Reynolds number increases [20]. 

1. Mathematical and Numerical Formulation 
The SIMPLE, SIMPLEC, and PISO algorithms commonly 
employ numerical techniques to compute the Navier-Stokes 
equations in the CFD, as shown in Fig. 4. 

 
Fig. 4 Flow chart for the SIMPLE, SIMPLEC, and PISO algorithms to 

compute the Navier-Stokes equations. 

SIMPLE algorithm 

The algorithm of the semi-implicit method can be 
summarized in Fig. 5: 

 
Fig. 5 Algorithm of the Semi-implicit Method (SIMPLE).  

SIMPLEC algorithm 

The SIMPLEC is a modified version of the SIMPLE 
algorithm that follows the same steps and algorithm. As a 
result, momentum equations are modified to omit less 
significant terms from velocity correction equations than those 
omitted in SIMPLE. This adjustment aims to reduce the impact 
of neglecting velocity neighbor correction terms. Figure 6 
shows the implicit pressure-based scheme for the Navier-
Stokes equations (SIMPLEC). 

 
Fig. 6 The implicit pressure-based scheme for the Navier-Stokes equations. 

PISO algorithm 

The Pressure-Implicit with Splitting of Operators (PISO) 
algorithm is an extension method for the SIMPLE algorithm. 
PISO has been successfully adapted for steady-state problems 
as well. This pressure-velocity calculation procedure uses two 
corrector steps and one predictor step to ensure mass 
conservation, as shown in Fig. 7. 

 
Fig. 7 The algorithm Pressure-Implicit with Splitting of Operators (PISO). 
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The governing Navier-Stokes equations are considered in 
a two-dimensional system of flow and are written for 
turbulence flow. Thus, the Reynolds Averaged Navier Stokes 
(RANS) equations are used. The governing equations that 
describe the problem are written as [21]: 

Conservation of mass: 

∂ui�
∂xi

 + 
∂ui�
∂yi

 = 0                                                                                 (2) 

Conservation of momentum:   

∂ui�
∂t

 + uj�
∂ui�
∂xj

 = −
1
ρ
�
∂p
∂xi
�+ ϑ�

∂2ui

∂xj
2 � −

∂uí uj́�����

∂xj
                             (3) 

The flow assumed is incompressible; therefore, the Mach 
number is lower than 0.3, and the solution of the governing 
equation is missing the independent equation for pressure. 
Thus, the pressure-velocity coupling SIMPLE method is used 
in order to link pressure and velocity. 

The equations 2 and 3 have been solved with the finite 
volume method, featuring a second-order upwind spatial 
discretization. The unsteady simulation used the second-order 
implicit method. 

The time derivative is discretized by applying the first-
order forward difference scheme. From Taylor expansion: 
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The advection part of the momentum conservation can be 
discretized as the time derivative part (local acceleration). 

�
∂U�
∂x
�

j

n
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 + O(∆x)                                                     (5) 

The pressure gradient is discretized as the previous part. 

1
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Discretization of diffusion equations in the second-order 
finite difference in space by a centered scheme. 

From Taylor expansion: 

Uj + 1
 n������� = Uj

 n���� + ∆x�
∂U�
∂x
�

j

n

+ 
∆x2

2!
�
∂2U�

∂x2 �
j

n

+ 
∆x3

3!
�
∂3U�

∂x3 �
j

n

+ 

∆x4

4!
�
∂4U�

∂x4 �
j

n

+ H.O.T.                                                                    (7) 

Uj−1
 n������ = Uj

 n���� − ∆x�
∂U�
∂x
�

j

n

+ 
∆x2

2!
�
∂2U�

∂x2 �
j

n

−
∆x3

3!
�
∂3U�

∂x3 �
j

n

+ 
∆x4

4!
�
∂4U�

∂x4 �
j

n

+ H.O.T.                                     (8) 

Summing the previous equations. 
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The discretized equation can be written as follows:  

Conservation of mass: 
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Conservation of momentum: 
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The discretization with the finite volume method could be 
done as follows: 
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The resulting system of linear algebraic equations is not 
tridiagonal because we have 6 unknown variables, and thus 
direct methods are more suitable, for example, Guess-Jordan 
elimination or the LU factorization method. 

The flow is characterized in a Cartesian coordinate system 
with two dimensions (x, y), where the x-axis is aligned with the 
direction of the inlet flow and the y-axis is parallel to the axis 
of the cylinder. 

The mesh should be able to catch all the flow details behind 
the cylinder. The size of the computational domain is 60D × 
25D with the cylinder circle at a distance of 10D from the inlet 
of the domain. The boundary layers are defined so that the inlet 
is located at 10D from the cylinder, while the outlet is placed 
at 50D from the cylinder. The cylinder diameter is D = 0.1 m, 
as shown in Fig. 8.  
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The following assumptions have been adopted:  

• The inlet velocity U in the computational domain is 
uniform. 

• For the domain walls, the no-slip condition is applied, 
Uwalls = 0. 

• The flow Reynolds number is 100. 

 
Fig. 8 Mesh boundary conditions. 

It is important to get accurate results in the simulation. 
Therefore, the refinement mesh structure is used around the 
cylinder, as shown in Fig. 9. One factor that affects the 
accuracy of the simulations is the convergence value, which is 
defined in the Fluent simulation software. It should be small 
enough to thrust the numerical calculations. In simulations, the 
convergence criteria were selected as 10-6. Simulations require 
fine meshes, especially in regions with high gradients. If the 
results change when the number of cells is changed while 
solving the simulation, it means that the mesh is not working 
properly. In this case, having 1,200,000 structured meshes 
resulted in an independent mesh. Time steps in various 
Reynolds numbers were computed using the current number, 
and the time steps that were less than this number were 
implemented in the software. When the Reynolds number is 
100, the time step is 0.1, and when the Reynolds number is 
1500, the time step is 0.05. 

 

 
Fig. 9 Region of fine simulation mesh with a high gradient. 

2. Results and Discussion 
The simulation started with steady-state and continued to 

transient conditions. The simulations were performed with two 
different Reynolds numbers: Re = 100 and Re = 1500. Figure 
10 shows the velocity field around the cylinder in the steady 
state. As this simulation was performed in a steady state, there 
are almost a pair of vortices in the back of the bluff body. 

 
Fig. 10 Steady-state simulation for Re = 100. 

When the steady-state simulations continue into the 
transition mode, the results will change. Figure 11 shows the 
transient results for Re = 100. Figure 9 shows the flow over the 
cylinder is not symmetric and steady. This is because of 
vortex-shedding phenomena, which cause the vortices to grow 
differently. The cylinder top and bottom form pairs of eddies 
alternately, creating vortex shedding as they travel to the wake 
region. 

 
Fig. 11 Transition simulation for Re = 100. 

Figure 12 shows the U-velocity profile along the centerline 
for two different simulations. Also, the graph shows there is a 
significant discrepancy between the first-order and second-
order results upstream, which affects the accuracy of the 
results. Second-order discretization is proposed, but more 
efforts should be made to be certain about the accuracy of the 
results. 
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Fig. 12 U-velocity profile along the centerline for Re = 100. 

Fluent Simulation software uses three different methods to 
couple pressure and velocity: SIMPLE, SIMPLEC, and PISO. 
In this work, SIMPLE and PISO were implemented. The PISO 
method did not converge for continuity equations, and as 
mentioned before, the SIMPLE method was used. Figure 13 
shows Pressure distribution over the cylinder, with maximum 
pressure at the front of the cylinder (angles 0° or 360°) and 
minimum in the back (90° or 270°). At any point on the surface 
of the cylinder, the fluid has two components: Pressure is 
normal to the surface, while shear stress is tangential. The 
tangential pressure gradient along the cylinder surface 
generates a vortex behind the cylinder. The flow momentum is 
quite low near the surface of the cylinder due to viscous effects 
[2]. Furthermore, the pressure tangential component of 
acceleration is another mechanism that affects the front and 
rear surfaces of the oscillating cylinder but not the upper or 
lower surfaces. When the cylinder accelerates downward, it 
produces fluxes of CW vorticity on the front face of the 
cylinder and CWW vorticity on the rear face of the cylinder. 

 

Fig. 13 Pressure distribution over the cylinder. 

Figures 14 and 15 show the drag and lift coefficients for 
the cylinder in different time steps for Re = 1500. When a 
vortex is dropped from the top, a low-pressure area is created, 
and the cylinder is subjected to the lift force. Another vortex is 
created after half a cycle at the bottom, leading to lift force 
changes. 

 

Fig. 14 Lift coefficient changes during time steps. 

 
Fig. 15 Drag coefficient changes during time steps. 

Figure 16 shows the velocity profile for two different 
turbulence models. Very close agreement downstream and at 
a short distance after the cylinder was observed. But in the 
wake region, the results were different. 

 
Fig. 16 U-Velocity profile for two different turbulence models. 

Conclusions 
Kármán vortex street is a phenomenon in fluid mechanics 

that occurs in a flowing fluid when it passes over a body. These 
vortexes occur alternately behind the body and are called the 
Kármán vortex street. 

In the current case, the body is assumed to be a cylinder. 
As the fluid passes over it at a certain speed, it is possible to 
deduce different shapes for the vortices emerging behind the 
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cylinder. Additionally, the formation of vortexes can be 
controlled by the Reynolds number. 

In this work, the flow around the cylinder was discussed 
theoretically. The governing equations were presented, and the 
model was simulated in Fluent software. Different parameters, 
such as pressure, U-velocity profile, drag, and lift coefficients, 
were investigated. Simulation of the flow with two turbulent 
models had very close results for u-velocity along the 
centerline. Regarding the accuracy of the results, although it 
was tried to increase the accuracy of the simulations, more 
efforts are needed to validate the results. 
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